Scientists Take Key Step Toward Custom-made Nanoscale Chemical Factories

[Our BioNano future depends on our ability to make many more types of these nanoscale chemical factories!]

Scientists have for the first time reengineered a building block of a geometric nanocompartment that occurs naturally in bacteria. They introduced a metal binding site to its shell that will allow electrons to be transferred to and from the compartment. This provides an entirely new functionality, greatly expanding the potential of nanocompartments to serve as custom-made chemical factories.

Scientists hope to tailor this new use to produce high-value chemical products, such as medicines, on demand.

The sturdy nanocompartments, which are polyhedral shells composed of triangle-shaped sides and resemble 20-sided dice, are formed by hundreds of copies of just three different types of proteins. Their natural counterparts, known as bacterial microcompartments or BMCs, encase a wide variety of enzymes that carry out highly specialized chemistry in bacteria.

The shell of a bacterial microcompartment (or BMC) is mainly composed of hexagonal proteins, with pentagonal proteins capping the vertices, similar to a soccer ball (left). Scientists have engineered one of these hexagonal proteins, normally devoid of any metal center, to bind an iron-sulfur cluster (orange and yellow sticks, upper right). This cluster can serve as an electron relay to transfer electrons across the shell. Introducing this new functionality in the shell of a BMC greatly expands their possibilities as custom-made bio-nanoreactors. (Credit: Clément Aussignargues/MSU, Cheryl Kerfeld and Markus Sutter/Berkeley Lab)

The shell of a bacterial microcompartment (or BMC) is mainly composed of hexagonal proteins, with pentagonal proteins capping the vertices, similar to a soccer ball (left). Scientists have engineered one of these hexagonal proteins, normally devoid of any metal center, to bind an iron-sulfur cluster (orange and yellow sticks, upper right). This cluster can serve as an electron relay to transfer electrons across the shell. Introducing this new functionality in the shell of a BMC greatly expands their possibilities as custom-made bio-nanoreactors. (Credit: Clément Aussignargues/MSU, Cheryl Kerfeld and Markus Sutter/Berkeley Lab)

Rest