Threading the CRISPR Needle with DNA Nanoclews

Advances in genome editing seem to be happening almost every other day. However, many groups are focused on improving the efficacy of Cas9 target recognition and cleavage—an important criterion for sure—while neglecting the development of efficient delivery methods.

Now a team of researchers from North Carolina State University (NC State) and the University of North Carolina at Chapel Hill (UNC-CH) have created and utilized a nanoscale vehicle composed of DNA to deliver the CRISPR-Cas9 gene editing complex into cells both in vitro and in vivo.

“Traditionally, researchers deliver DNA into a targeted cell to make the CRISPR RNA and Cas9 inside the cell itself—but that limits control over its dosage,” explained co-senior author Chase Beisel, Ph.D., assistant professor in the department of chemical and biomolecular engineering at NC State. “By directly delivering the Cas9 protein itself, instead of turning the cell into a Cas9 factory, we can ensure that the cell receives the active editing system and can reduce problems with unintended editing.”

The findings from this study were published recently in Angewandte Chemie through an article entitled “Self-Assembled DNA Nanoclews for the Efficient Delivery of CRISPR-Cas9 for Genome Editing.” Rest