Monthly Archives: September 2017

Faking cellular suicide (The Economist) & MIT RNA News

Faking cellular suicide could help control inflammation

And that could help treat everything from hay fever to arthritis

AS PARACELSUS first pointed out in the 16th century, it is the dose that makes the poison. Inflammation, in particular, is vital to fighting infection or healing wounds. If it lingers, however, it can cause more harm than good. Chronic inflammation often impedes the very healing that it is meant to promote. Many drugs have been invented to combat that problem, but none is as effective as doctors would like. Now, as they describe in a paper in ACS Macro Letters, a team led by Mitsuhiro Ebara at the National Institute for Materials Science in Japan have come up with a new approach. They have worked out how to persuade cells in inflamed tissues to believe that other cells nearby have just committed suicide. REST

Bio-inspired approach to RNA delivery

New technique could make it easier to use mRNA to treat disease or deliver vaccines.

By delivering strands of genetic material known as messenger RNA (mRNA) into cells, researchers can induce the cells to produce any protein encoded by the mRNA. This technique holds great potential for administering vaccines or treating diseases such as cancer, but achieving efficient delivery of mRNA has proven challenging.

Now, a team of MIT chemical engineers, inspired by the way that cells translate their own mRNA into proteins, has designed a synthetic delivery system that is four times more effective than delivering mRNA on its own. REST

To improve health monitoring, simply trip the ‘nanoswitch’

An easy to use, low-cost ‘NLISA’ platform for detecting biological signatures could shake up the way we monitor our health

By Kat J. McAlpine, Boston Children’s Hospital

(BOSTON) – Engineered strands of DNA — nanoscale tools called “nanoswitches” — could be the key to faster, easier, cheaper and more sensitive tests that can enable high-fidelity detection of biomarkers indicating the presence of different diseases, viral strains and even genetic variabilities as subtle as a single-gene mutation.

“One critical application in both basic research and clinical practice is the detection of biomarkers in our bodies, which convey vital information about our current health,” says Wesley Wong, PhD. “However, current methods tend to be either cheap and easy or highly sensitive, but generally not both.”

Rest