Of Mice and Men and HIV Toxin

An antibody and toxin mix has successfully detected and killed HIV-infected cells lurking in the organs and bone marrow of mice that were altered to have a human immune system.  The results, reported Thursday in the online journal PLOS Pathogens, offer conceptual proof that a reservoir of HIV-infected cells in organs can sought out and destroyed, a scenario that would potentially end the stalemate between the virus and antiretroviral drug therapies.

http://www.latimes.com/science/sciencenow/la-sci-sn-hiv-toxin-20140108,0,925613.story#ixzz2syfkX6YE

$105M for Genomic Medicine

NEW YORK (GenomeWeb News) – The New York Genome Center (NYGC) and the University of Buffalo (UB) have received $105 million in state funding to work together in pursuing genomic medicine advances and computational biomedical research, NYGC and UB said today.

The funding, which New York Gov. Andrew Cuomo unveiled in his “State of the State” remarks [January 9th], will provide $55 million to NYGC and $50 million to the University of Buffalo to create the NY Genomic Medicine Network.   Rest

Nanoparticles: a pill instead of an injection

A new advance in the use of nanoparticles to deliver medicine or other therapeutics orally is described in a short summary in a Wall Street Journal article or a longer, more detailed news release from MIT.  Not surprisingly Professor Robert Langer is an author on the paper appearing in the Nov. 27 online edition of Science Translational Medicine.  In a classic example of looking to nature to show the way, the researchers looked at previous work on how babies absorb antibodies from their mothers’ milk, and then built nanoparticles that are selectively passed through the intestinal barrier using protein coats that are recognized by receptor sites in the intestinal lining.

The research was funded by a Koch-Prostate Cancer Foundation Award in Nanotherapeutics; the National Cancer Institute Center of Cancer Nanotechnology Excellence at MIT-Harvard; a National Heart, Lung, and Blood Institute Program of Excellence in Nanotechnology Award; and the National Institute of Biomedical Imaging and Bioengineering.

Misfolding Polypeptides

A number of diseases—including diabetes, Alzheimer’s, and Parkinson’s—are associated with polypeptides that misfold and aggregate into fibrils that further clump together to form plaques. Researchers have now characterized the structure of an intermediate that leads to fibrils in the folding pathway of a polypeptide implicated in type 2 diabetes.

Disrupting formation of the intermediate structure may provide a new target for preventing or treating the disease, which is a growing public health problem. Type 2 diabetes is defined as an inability to produce enough of or respond properly to insulin. Consequently, glucose builds up in the bloodstream. Over time, the condition causes increasingly serious health problems.

The work to characterize the polypeptide intermediate was led by graduate student Lauren E. Buchanan and chemistry professor Martin T. Zanni of the University of Wisconsin, Madison.  REST

Heated Nanoparticles Throw Gene Therapy Switch

In a strategy known as gene therapy, scientists insert engineered DNA into diseased cells in order to treat or kill them. Now, researchers have combined nanotechnology and synthetic biology to create a simple switch to turn on such genes inside cells. They demonstrate that heat generated by magnetic nanoparticles activates the engineered genes, slowing tumor growth in mice (ACS Synth. Biol. 2013).  REST

A cheap and simple pathogen detector?

Here’s an interesting idea. The threat from viral pathogens such as bird flu, hepatitis B and HIV, represents a clear and present danger. So cheap and simple tools for detecting these viruses are much needed, particularly in thVirus sensore developing world where the threat is acute but money scarce.

Step forward Jaeoh Shin and pals at the University of Potsdam in Germany who say that it is possible to create just such a virus detector using little more than a few strands of DNA mixed into a lump of hydrogel. This ‘intelligent’ blob would shrink when the virus in question was around giving a clear visible signal that precautions need to be taken.  REST

Imec and Johns Hopkins University team to expand healthcare applications for silicon nanotech

Leuven (Belgium) October 24, 2013 - Researchers and physicians at Johns Hopkins University will collaborate with the nanoelectronics R&D center imec to advance silicon applications in healthcare, beginning with development of a device to enable a broad range of clinical tests. The corresponding tests will be performed outside the laboratory. The collaboration, announced today, will combine the Johns Hopkins clinical and research expertise with imec’s nanoelectronics capabilities. The two organizations plan to forge strategic ties with additional collaborators in the healthcare and technology sectors.

“Johns Hopkins has always prioritized innovative and transformative research opportunities,” said Landon King, MD, the David Marine Professor of Medicine and executive vice dean of the school of medicine. “Our new collaboration with imec is such an opportunity, and we very much look forward to leveraging our respective strengths across the university in biomedical and nanotechnology research to improve patient diagnosis and care throughout the world.”

Imec and Johns Hopkins University hope to develop the next generation of “lab on a chip” concepts based on imec technology. The idea is that such a disposable chip could be loaded with a sample of blood, saliva or urine and then quickly analyzed using a smartphone, tablet or computer, making diagnostic testing faster and easier for applications such as disease monitoring and management, disease surveillance, rural health care and clinical trials. Compared with the current system of sending samples to a laboratory for testing, such an advance would be “the healthcare equivalent of transforming a rotary telephone into the iPhone,” said Drew Pardoll, MD, PhD, the Martin Abeloff Professor of Oncology. Pardoll leads the advisory board for the Johns Hopkins-imec collaboration, which will work to extend new applications of silicon nanotechnology into multiple areas of medicine.

“This relationship with Johns Hopkins is an important step toward creating a powerful cross-disciplinary ecosystem with consumer electronics and mobile companies, medical device manufacturers, research centers and the broader bio-pharma and semiconductor industries, to create the combined expertise required to address huge healthcare challenges that lie ahead,” stated Luc Van den hove, CEO at imec. “Only through close collaboration will we be able to develop technology solutions for more accurate, reliable and low-cost diagnostics that pave the way to better, predictive and preventive home-based personal health care.”  REST

Thomson Reuters Life Sciences and Orion Bionetworks collaborate

Thomson Reuters Life Sciences and Orion Bionetworks collaborate to advance the development of new therapies for multiple sclerosis (MS) by generating predictive models of patient stratification and drug targets.  From yesterday’s press release:

“Thomson Reuters Life Sciences Professional Services researchers use MetaBase, the company’s flagship, manually curated database of protein interactions, biological pathways, disease biomarkers and medicinal chemistry, along with its unique collection of MS specific pathway maps and biomarkers, to construct predictive models that identify molecular subtypes, biomarkers, associated mechanisms and novel drug targets.

Thomson Reuters will provide Orion Bionetworks with the results of the modeling through access to the new MetaBase MS pathways and networks via the Thomson Reuters MetaCore platform, an integrated software suite for functional data analysis. The models will also be made available to the Alliance through tranSMART, an open source data sharing and analytics platform.

“We are pleased to be collaborating with Orion Bionetworks on this initiative and providing both our research expertise and the most authoritative content on biological pathways and molecular interactions,” said Joe Donahue, senior vice president, Thomson Reuters Life Sciences. “Their cooperative research model brings together academic groups, non-profit institutions and commercial companies to focus on specific diseases, with the promise of developing new therapies faster.”

BioNano scale research in Nobel Prize for Medicine

Three Americans won the Nobel Prize in Physiology or Medicine Monday for discovering the machinery that regulates how cells transport major molecules in a cargo system that delivers them to the right place at the right time in cells. The Karolinska Institute in Stockholm announced the winners: James E. Rothman of Yale University; Randy W. Schekman of the University of California, Berkeley; and Dr. Thomas C. Südhof of Stanford University. The molecules are moved around cells in small packages called vesicles, and each scientist discovered different facets that are needed to ensure that the right cargo is shipped to the correct destination at precisely the right time.  Rest of NYTimes article

FWIW commentary: many of the “vesicles” that are the subject of the research for the above Nobel winner and that play such an important role in moving major molecules around in cells are approximately 50-100 nanometers in diameter.  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142546/